If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-154x+143=0
a = 11; b = -154; c = +143;
Δ = b2-4ac
Δ = -1542-4·11·143
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17424}=132$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-132}{2*11}=\frac{22}{22} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+132}{2*11}=\frac{286}{22} =13 $
| 8t+4=10+2t | | 1,2x=7,4 | | 6d-4d-d-8-4d=0 | | 3(a-2)+14=6a | | -5r+6-5=(r+2) | | 6x+11+10x-9=360 | | 14=8p+10-7p | | -2y=45+5y+2y | | 8(x-3)-2=2-8(3x-2) | | 4(w-4)-6w=-30 | | 4=-8x+4(x+4) | | P=6.78–0.14t | | .2x+x=392400 | | 18=2x+45 | | ∠A=8x+78∘∠B=2x+114∘ | | 4x+33x+6= | | 7x-47=11x+65 | | 20=r+10 | | 2w+2(w+41/40=1401/2 | | 7x-47=11x | | 2(x+3)-x+8=6(x-5)+2 | | 2w+2(w+41/4=1401/2 | | 13x=15x-1 | | 27=15n | | 5x-3(6x+4)=-155 | | -7m/9=-6 | | 13x=15x-4 | | -r–22=7 | | n/16-20=0 | | 6p-14=8p-4 | | (x/5)+3=17 | | (x+32)+99=180 |